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1. INTRODUCTION

When one considers orthogonal polynomials for general measures,
several phenomena occur that have no analogue in the classical prototype
of Jacobi polynomials. This paper is concerned with showing the existence
of oscillatory linearized norm behavior, and in showing that, when the
linearized norm oscillates, the range of its limit points is an interval. The
final section contains a discussion of the implication of these results for
zero distribution, and also contains, in Theorem 5.2, a related result due to
the second author, whose proof will appear elsewhere.

It is especially appropriate to dedicate this paper to the memory of
Professor Geza Freud who interacted in many positive ways with the first
and third authors and in particular was co-discoverer with L. Ziegler of
Theorem 2.2 of this paper.

2. DEFINITIONS AND STATEMNET OF THEOREMS

DEFINITION 2.1. Let Jl be a unit measure defined on the Borel subsets of
1= [ - 1, 1], whose support S(Jl) is an infinite set. The unique polynomials
{Pn(x)} or {Pn(x,Jl)}, Pn(x)=xn+ "', and the unique constants
{Nn(Jl)}, n=O,I, ..., such that SPm(x) Pn(x) dJl = bm,n(Nn(Jl»2, n,m=
0, 1,..., where bn,m = 0 if n =f. m and 1 if n = m, are called the orthogonal
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polynomials and their norms for the weight measure fl. We also let An(fl) =
(Nn(fl))l/n and call it the linearized norm.

DEFINITION 2.2. For a compact set K c I, we denote the logarithmic
capacity by C(K) [5, p. 55], and henceforth refer to this as the capacity of
K. For a general set Eel, C(E) is defined as the inner capacity, and is also
referred to as the capacity of E.

DEFINITION 2.3. Let fl be a weight measure with support S(fl). A Borel
set E c S(fl) for which fl(E) = 1 is called a carrier of fl. Let C= C(S(fl)) and
let C = Inf C(E), where E ranges over the carriers of fl. These numbers are
referred to as the upper and lower carrier capacities of fl. If C < C we call fl
an undetermined weight measure. Otherwise it is called a determined
weight meausure. See [6, p. 121] for proof of the existence of undetermined
weight measures.

DEFINITION 2.4. Let fl be a weight measure. Another weight measure v
is said to be carrier related to fl, written v~ fl, if every carrier of fl is a
carrier of v, and every carrier of v is a carrier of fl. It is clear that the
relation ~ is an equivalence relation in the class of weight measures.

THEOREM 2.1. Let fl be an undetermined weight measure with lower and
upper carrier capacities C C. Let C1 , C2 be two numbers that satisfy C <
C1 < C2 < C. Then there is a weight measure v, carrier related to fl, such that
limn~ a:Jn(v) ~ C1 and limn~ co}on(v):;::, C2 •

DEFINITION 2.5. A weight measure fl for which the linearized norm
}'n(fl) does not converge is called a norm oscillatory weight measure.
Otherwise fl is called a norm convergent weight measure.

THEOREM 2.2. Let fl be a norm oscillatory weight measure. Then the limit
points of the sequence of linearized norms form an interval.

Since by [6, p. 121] undetermined weight measures exist, by
Theorem 2.1 norm oscillatory weight measures exist. However, we will
show that an undetermined weight measure need not be norm oscillatory,
and we will study further properties of undetermined, norm convergent
weight measures in a forthcoming paper.

3. PROOF OF THEOREM 2.1

We first assemble needed lemmas and definitions, then sketch the proof
and finally complete the details.

LEMMA 3.1 [7]. Let f1 be a weight measure. Then a measure v is a
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weight measure and satisfies v~ J.l if there is a Borel measurable function
w(x), positive a.e. J.l, such that f w(x) dJ.l = 1 and is such that for any Borel
set E c I, v(E) = fE w(x) dJ.l. When v is related to J.l in this way, we use the
notation v= J.lw'

LEMMA 3.2. Let J.l be a weight measure in the undetermined case, with {;
C as the lower and upper carrier capacities. If C j is a real number satisfying
{; < C j < C, J.l has a carrier E with the representations E = U:~ j En, where
En is compact, EncEn+ j , J.l(En»O, n=1,2,...,E is not compact and
C(E)<C j •

PROOF OF LEMMA 3.2. There is a carrier, say E*, of capacity less than C j

by the definition of{;. Since J.l is a normal measure, E* contains compact sets
whose J.l measure is as close to one as desired. Hence a carrier E with the
stated structure can be achieved as a subset of E*. Since C(E) ~ C(E*) <
C j < C, E cannot be compact, since S(J.l) is the smallest compact carrier of J.l.

DEFINITION 3.1. Let K be a compact set in the plane, and let Q be the
unbounded component of its complement. If for any real valued function
f('1> 'z), defined and continuous on the boundary of Q, there is a real
valued function J.l(x, y) harmonic in Q, tending to a constant as (x, y)
tends to infinity and tending to f('t, ,n as (x, y) tends to (,t, ,n from
values in Q, where (a, '1) is an arbitrary point on the boundary of Q, we
say Q is a Dirichlet domain and that K is a regular compact set.

LEMMA 3.3 [1,2]. Let E be a bounded Borel set in the plane of positive
capacity C(E). Thenfor any G, 0 < G < C(E), there is a regular compact set in
E of capacity greater than C(E) - G.

LEMMA 3.4 [7]. Let J.l be an undetermined weight measure, let K be a
regular compact subset of S(J.l), let E be a carrier of J.l and let n be a positive
integer. Then(a) there is a non-negative Borel measurable function wn(x) with
the property that fWn(x)dJ.l=1jnZ and An={x:wn(x»O} is a compact
subset of E, and (b) there is a sequence of positive integers {mn}, n = 1,2,...,
with the property that limn ~ 00 m~/n = 1, such that if Qn(x) is any polynomial
of degree n,

fl Qn(xWwn(x) dJ.l;;:'C Qn;X)IIKy nZ~/

where II Qn(x) II K = maxxEKI Qn(x) I·

LEMMA 3.5 [5, p.73]. Let K be a compact set with capacity C(K), and
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let Tn(z, K) be the monic polynomial ofdegree n of least uniform norm on K.
Then limn~ 00(11 Tn(z, K) IIK)I/n = C(K).

We now outline the proof, after which we carry out the details. In the
hypothesis of Theorem 2.1 we are given a weight measure Il and constants
CI , C2 such that (:' < C I < C2 < C. By Lemma 3.2 we let E be a carrier of f.1

with C(E) < CI' and with the representation Uf' En having the properties
specified in the lemma. Let K be a regular compact subset of S(Il) with
C(K) > C2 . Such a set exists by Lemma 3.3. We then chose two increasing
sequences of integers {sn}, {tn}, n= 1, 2,... , such that

(3.1 )

and

n= 1, 2,...,

n=2,3, ...,

(3.2)

(3.3 )

where H n= En U A tl U ... U A tn _
l

, n = 2,3,.... With these sequences we
construct the function

where

w(x) = w*(x) + w**(x), (3.4 )

(3.5)

where So = 0, and

**( ) _ 1L:-1 wtJx)
w x -"2 L:~l l/t~ ,

(3.6)

where wn(x) are the functions of Lemma 3.4 for the sets K and E already
chosen in this discussion. We then show that w(x) > 0 a.e. Il, and
Jw(x) dll = 1, so that by Lemma 3.1 v = f.1w is carrier to Il. The final step is
to show that lim AsJv) :% C 1 and lim ), tJv) ?' C2' to complete the proof of
Theorem 2.1.

We begin supplying the details of this sketch by giving an informal proof
that sequences exist satisfying (3.1), (3.2), and (3.3). Since this is a critical
step of the proof, we supply a proof based in the principle of recursive
definition [4, p. 10] at the end of this section. Since C(E I ) ~ C(E) < C l' we
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can choose SI as the least integer for which (3.1) is satisfied. We then
choose t 1 as the smallest integer satisfying (3.2) for n = 1. Since H 2 c E, we
can use Lemma 3.5 and choose S2 as the smallest integer which satisfies
(3.3) for n = 2, and also satisfies S2 > SI' We then choose t 2 as the least
integer which satisfies (3.2) for n=2 and satisfies t2 >t l • We proceed in
this manner to construct the remainder of the sequences.

Since w*(x) is positive on E, the same is true of w(x), and since E is a
carrier of fl, we have w(x) > 0 a.e. fl. An easy calculation shows that
Jw(x) dfl = 1, so that v= flw is a weight measure and is carrier related to fl.
We now consider estimates on An ( v) for n = tb k = 1, 2, ..., Using
Lemma 3.4 we find

A;:k(V) = fIPtk(X, v)1 2 dv= flPtk(XW w(x) dfl

;;:, f IPtk(xW w**(x) dfl;;:'~ L:~11 1/t~ f IPtk(xW wtJx) dfl

Since IIPtk(x)h;;:,(C(K)rk [5, p.62], we have

lim Atk (V);;:'C2 , so that lim An(V);;:'C2 .
k_oo n_oo

We now want to show that limk~ooAsJv):'(CI' which yields
limAn ( v) :'( CI' For k fixed and ;;:, 2, we have

A;:k= fIPSk(X,vWdv:'(fITsk(X,HkWdv (3.7)

:'( f ITSk(x, HkW dv + f ITSk(x, HkW dv. (3.8)
Hk E\Hk

We use the notation that A is the complement of A and A\B = A n E. The
second inequality in (3.7) uses the fact that if Qn(x) is a monic polynomial
of degree n, then JIQn(x)1 dv is least when Qn(x)=Pn(x, v). By (3.3), the
first integral in (3.8) is bounded by (C 1 )2sk• The second integral in (3.8) is
equal to

To bound the first integral in (3.9) we observe that E\Hk c Ek and for
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XE I, ITSk(x, H k ) I~ 2Sk since the zeros of TSk(x, H k ) lie in I. Thus we have
the bound

We bou~the second integral in (3.9) in similar fashion. Since

£\Hk c U~:::} A tn and ITSk(x, Hd I~ 2Sk for x E I, if we let M = 112:::= 1 l/t~,
then we have the bound

(22Sk)Mf co (22sk)M co J;:1
2 L wtJx) d/1 ~ 2 L fwtJx) dfl U A tn

n~l n=k n=l

(2 2sk )M co 1 (2 2sk )M co 1 M
- " _~ " -~-(C )2Sk

- 2 L. t 2 "" 2 L. n2 "" 2 1 ,
n=k n n= tk

where (3.2) is used in the last inequality. Thus

and lim ASk ~ C l' finishing the proof of Theorem 2.1.

The principle of recursive definition states that if fn is a mapping from Rn

to R, R = (- 00, 00), and Xl is given in R, then there exists a unique
sequence {xn}, n= 1, 2,... such that Xn+ l =fn(x l"", x n). For a compact set
K c I, and C1 > C(K), let {K, Cd be the least positive integer for which
liTn(x,K)IIW~Cl for all n~{K,Cd. This integer exists by Lemma 3.5.
Now let

and

([(
2 )

2X
2

n

- iJ )f2n-l = C
l

+2 V X2n -2 + 1 , n = 1, 2, ..., (3.10)

n = 2, 3,..., (3.11)

where [IXJ is the greatest integer in IX and (a vb) is the maximum of the
real numbers a and b. Then if Xl is given by {Et> Cd, there is a unique
sequence {xd, k= 1, 2,..., which satisfies X2n =!2n-l(Xl"",X2n-
n = 1, 2, ..., and X2n-l = !2n-2(Xl ,..., X2n - 2), n = 2,3,....
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Let x2n-1 = sn, n = 1, 2,..., let X 2n = tn' n = 1, 2,..., and let Hn =
En U Uk: l A,k' n = 2, 3,.... We see in this change of notation that

n= 1, 2, ...,

n=2,3,....

(3.12)

(3.13)

(3.14)

From (3.12) we see that IITsJx,Edlll/sl~CI' From (3.14) we see that
{sn} n = 1, 2,..., is an increasing sequence of integers and that
II Tsn(x, H n) II }}~n ~ C I'

From (3.13) we see that {tn }, n= 1, 2,..., is an increasing sequence of
integers. Further we note that tn ;:' [(2/Cd2Sn ] +2;:, (2/Cd 2sn + 1. Hence
tn -1;:,(2/Cd2Sn and 'n~I~(Cd2)2Sn. Thus L:;:'~'n;Z<S~-ldtl(tn-1)<
(Cd2?Sn, n= 1, 2,..., and the sequences {sn}, {tn} satisfy all the conditions
of (3.1), (3.2), and (3.3).

4. PROOF OF THEOREM 2.2

The first thing we show is that Nn = Nn(fl) is nonincreasing. In fact

(Nn(fl))2 = SIPn(x, fl) 1
2 dfl ~ S I xPn_ 1(x, fl) 1

2 dfl

~ SIPn- 1(x, fl) 1
2 dfl = N~ - 1(fl)·

We want to show that if IX and (J are limit points of An = An(fl), and
IX < Y< {J, then y is also a limit point of An- We first consider the case in
which limn -> 00 An = b > 0, and then reduce the general case to this case.

Now 10gAn-IogAn+ 1 =(1In)logNn -(1/(n+1))logNn+ l , so that
(n+ l)(log An-log An+ l ) = (1 + (lin)) log Nn-log Nn+ 1 = log NnlNn+ 1+
log N~/n ;:, log bl2 for sufficiently large n, say n;:' n*. Thus log An + 1 ~

log An + (log(2Ib)/(n + 1)).
Since S1Pn(x, flW dfl':::::; SI Tn(x, IW dfl:::::; (1/2n- I)2 from known results
about Tchebycheff polynomials, it follows that limn -> 00 An :::::; ~, so that 6 :::::; ~
and log 216 > 0.

Let n l be the first integer greater or equal to n* for which log Anl :::::; log y,
and let n2 be the first integer greater than nl for which log An2 > log y. Then
log An2 - 1 ::::::; log y < log An2 and log y -log An2 - 1 ::::::; log An2 -log An2 -1 ::::::;
log (2/6)ln2 • Let n3 be the first integer after n2 for which An3 ::::::; log ]i, and let
n4 be the next integer after n3 for which log An > log y. Then as before
log y -log An4 -1 ::::::; log 2Ib/n4 • The process yields an infinite sequence since
IX<y<{J and limk->ooAn2k-1 =]i.
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If limn ~ 00 An = 0 and rt and f3 are limit points of An we can reduce the
analysis to the previous case as follows. Say y is such that (J( < y < f3. Choose
e so that 0 < e < y and consider the new sequence N~ = Nn + en, and the
derived sequence A; = (N;)I/n. Since N; is nonincreasing we proceed as
before, and note that limn ~ 00 A; = e, limn ~ 00 ),; ;?: f3. Hence there is a sub
sequence for which limn ~ 00 At = y and it is finally verified that
limn ~ 00 Akn = y to complete the demonstration.

5. DISCUSSION

Theorem 2.2 has a consequence for zero distribution because of
Theorem 5.1 which we state here after necessary preliminaries, and which
we will prove in a forthcoming paper.

DEFINITION 5.1. Let /1 be a weight measure, and let n be a posItIVe
integer. The zeros of Pn(x, /1) are simple and lie in l. Let V n be a unit
measure having mass lin at each zero of Pn(x, /1). We call Vn a zero
measure of /1.

DEFINITION 5.2. Let /1 be a weight measure and let {v kn }, n = 1, 2,..., be
a sequence of zero measures of /1. If there is a Borel measure v such that
limn ~ 00 Jf(x) dvk

n
= Jf(x) dv for all functions f(x) continuous on I, we say

{vkJ converges, and that it converges to v. This is also called weak*con
vergence. We call v a zero distribution measure of /1.

LEMMA 5.1 [3, p.290]. If /1 is a weight measure and {vd, n = 1, 2,..., is
a sequence of zero measures of /1, then some further subsequences of these
zero measures converges.

THEOREM 5.1. Let /1 be a weight measure with C> O. Then if a sequence
of zero measures of /1 converges, say {VkJ converges to v, then the
corresponding sequence of linearized norms {A kn }, converges, say to A, and if
any other sequences of zero measures of /1 converges to v, the corresponding
sequence of linearized norms converges to the same number A.

Let /1 be a norm oscillatory weight measure with C> O. Because of
Theorem 2.2, the sequence {In(/1)}, n = 1, 2, ..., has uncountable many limit
values. Let )"1' 2z be two distinct values with limn ~ 00 AsJ/1) = Al and
limn~ooAtn(/1)=Az.By LemmaS.!, there is a subsequence, say {Pn} ofthe
sequence {sn} for which vPn converges, say to v1> and a subsequence, say
{qn}, of the sequence {tn} for which vqnconverges, say to Vz. Since
limn~ooApn =A 1 and limn~ooAqn =Az, it follows from Theorem 5.1 that
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VI #V2 . Thus a norm oscillatory weight measure with 9>0 has incoun
tably many zero distribution measures associated with it.

We finally announce a theorem that characterizes the possible limit
values of the linearized norms of undetermined measures.

THEOREM 5.2. Let {t be an undetermined measure with 9 and C as lower
and upper carrier capacities. Let a, 13 be any numbers satisfying 9 ~ a ~
13 ~ C. Then there is a weight measure V, carrier related to {t, such that the
interval of limit points of the sequence {An(V)}, n = 1, 2,..., is precisely [a, 13],

It will be shown in a future publication that the inequality 9 < C I in
Theorem 2.1 can only be improved to 9 ~ CI' and that the inequality 9 ~ a
in Theorem 5.2 cannot be improved. In other words, we will show that for
any weight measure V carrier related to a weight measure {t,

limn ~ 00 An ( v) ~ 9 where 9 is the lower carrier capacity of {t.
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